

DELIVERABLE D8.6

BROCHURE

Contract number :	768636	
Project acronym :	LASER4SURF	
Project title :	LASER FOR MASS PRODUCTION OF FUNCTIONALISED METALLIC SURFACES	

Deliverable number :	D8.6
Dissemination level :	PU (Public)
Report date :	31 march 2018

Author(s):	Ainara Rodriguez, Corinna Barnstedt		
Partners contributed :	CEIT-IK4, ESCI		
Reviewer:	Rodriguez, Ainara		
Contact :	Elmar BartImae, European Science Communication Institute gGmbH, Ziegelhofstr. 8, 26121 Oldenburg Tel.+49 441 779 222 812, Fax +49 441 779 222 818 , e-mail eb@esci.eu		

The LASER4SURF project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768636

Coordinator: CEIT

DISCLAIMER

The content reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.

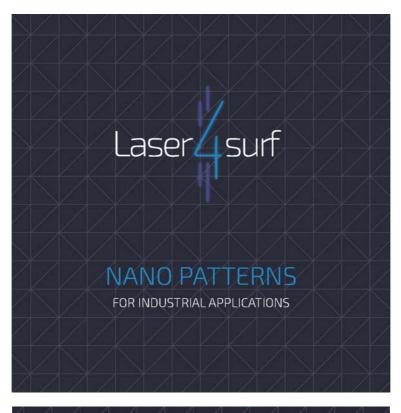
VERSION CONTROL

Version	Date	Contributors	Sections Affected
1	05/04/2018	Rodriguez, Ainara; Barnsted, Corinna	All

Deli	verable D8.6	. 1
Disc	laimer	. 2
Version control		
	cutive summary	
1	Introduction	. 5
2	Project Brochure	. 6
3	Conclusions	. 8

EXECUTIVE SUMMARY

This deliverable contains the project brochure, that will operate as a tool to present the project and to support project communication at workshops, fairs and conferences.



1 INTRODUCTION

This deliverable contains the project brochure, that will operate as a tool to present the project and to support project communication at workshops, fairs and conferences. It has been designed by ESCI with the technical support of CEIT-ik4. The designed brochure will be uploaded to the project webpage and printed copies will be used for dissemination activities.

2 PROJECT BROCHURE

AIM OF LASER4SURF

This EU-funded H2020 project aims to bring LIPSS to mass production. This will be achieved by developing an easy to handle all in one machine that comprises a laser texturing device, an in-line monitoring system and simulation tools. Three use cases will demonstrate increased product performance:

1) MEDICAL COMPONENTS

Antibacterial properties against mouth infections along with a surface enabling a good biological response by the surrounding tissues will deliver the new generation of dental implants.

2) ADVANCED BATTERIES

Enhanced adhesion and roughening of the current collector will allow controlled changes in the current collector surface in a very cost-effective and fast way (0.1 min/cm2). It will also improve the electrochemical properties of battery current collectors.

3) LINEAR ENCODERS

Tuning the reflection properties on the scale will make the encoder less prone to misalignments.

DELIVERABLE D8.6

Applying a specific type of pattern or roughness onto the surface in order to change its properties using laser technology offers a significant commercial potential. This is because it allows improved product performance without altering the surface's chemical composition or adding any coatings. Femtosecond LIPSS will enable high resolution features (<1µm) in very precise locations with cost effective process times.

WHAT ARE LIPSS?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768636.

3 CONCLUSIONS

The designed brochure will be uploaded to the project webpage and printed copies will be used for dissemination activities.